Seminarvortrag

The Real-Time
Specification
for Java

Erik Burger

Overview

 History of RTSJ / development process
e Standard JDK architecture

* Requirements on real-time systems

» RTS] specification

e Code examples

* Implementations

12.07.2007 The Real-Time Specification for Jave

History of RTS]

12.07.2007 The Real-Time Specification for Jave

History of RTS]

* Java Is generally believed as unsuitable
for real-time applications

e Common handling of real-time
components in Java: Use C for real-time
parts, Java for the application

12.07.2007 The Real-Time Specification for Jave

History of RTS]

* Java Specification Request (JSR) number 1
* Specification Document: 2001

* various companies were involved during
the spec process (Sun, IBM, TimeSys)

12.07.2007 The Real-Time Specification for Jave

Design of Java

12.07.2007 The Real-Time Specification for Jave

Design of Java

Write

O nce

R un

A nywhere

12.07.2007 The Real-Time Specification for Jave

Design of Java

Virtual Machine (JVM)

e abstraction layer for underlying hardware

* bytecode interpreter = hand-optimized
assembler code

e Just-In-Time (JIT) compiler

* does class loading, scheduling, memory
Mmanagement

12.07.2007 The Real-Time Specification for Jave

Design of Java

Garbage Collection (GC)

* not Iin the Java Specification
e part of the JVM
e collects unused memory

e GC is the only possibility to free memory
in Java

12.07.2007 The Real-Time Specification for Jave

Design of Java

GC Is executed

e on request: System. gc suggests GC, but
program can prevent execution

e on demand: only when new() is invoked
and there is not enough memory on the
heap

* in background: when system thinks that
program is idle; can be disabled

12.07.2007 The Real-Time Specification for Jave

12.07.2007

Requirements on a
Real-Time System

The Real-Time Specification for Jave

11

Requirements on a RT System

real time # really fast

Requirements on a RT System

e But then, what does Real-Time mean?

o ,the abillity to reliably and predictably
reason about and control the temporal
behavior of program logic” (Bollela)

e consistent performance over speed

12.07.2007 The Real-Time Specification for Jave

Requirements on a RT system

according to Alan Burns, a real-time system
IS required to:

e specify times at which actions are to be
performed

e specify times at which actions are to be
completed

* respond to situations where all timing
requirements cannot be met

* respond to situations where the timing
requirements are changed dynamically

12.07.2007 The Real-Time Specification for Jave

Requirements on a RT system

How does Java meet these requirements?

e GC makes predictions on execution times
complicated

* possible solution: force GC to become
predictable (e.g. Sun Java RTS 1.0)

* JVM performance depends on caching,
paging, DMA

 problem: uncontrolled asynchronous
events

12.07.2007 The Real-Time Specification for Jave

The Real-Time
Specification for Java

12.07.2007 The Real-Time Specification for Jave

16

e enhancement of API, no syntactical
extension

e any compiler can make classes that use
RTSJ

e correct non-real-time code will execute on
any real-time implementation

e for real-time applications, a real-time JVM
IS needed

12.07.2007 The Real-Time Specification for Jave

The RTS] enhances Java in six fields:

e RT threads with more carefully defined
scheduling attributes

* tools and mechanisms that help writing
code that does not need GC

 asynchronous event handlers

e asynchronous transfer of control

* control over memory allocation of objects
e direct memory access

12.07.2007 The Real-Time Specification for Jave

High-Resolution Time

 0.1us granularity is sufficient for almost
any software purpose

e RTSJ: 84bit time

* nanosecond granularity,
range of ~292 years

* HighResolutionTime Base Class
 Rational Time for periodic events

12.07.2007 The Real-Time Specification for Jave

Real-Time Threads

» extended priorities (28 levels)

* scoped memory

* AsynchronouslylInterruptedExceptions
e periodic scheduling

12.07.2007 The Real-Time Specification for Jave

Memory Allocation
* no “magqgic” real-time GC
e three types of memory:

- immortal memory: never GC'ed, shared
among all threads, remains until JVM
terminates

- scoped memory: defined lifetime

- heap: GC frees object only if it cannot
be reached

12.07.2007 The Real-Time Specification for Jave

* NoHeapRealTimeThread

- Is not allowed to access elements on the
heap

- can preempt GC
* Reuse of immortal memory is encouraged

e re-using of threads is possible

12.07.2007 The Real-Time Specification for Jave

 Allowed memory assignment:

= Heap = Immortal = Scoped
Heap v v X
Immortal 4 4 X
Scoped 4 4 "Available” Scopes
Local Variable v v "Available” Scopes

12.07.2007 The Real-Time Specification for Jave

Asynchronous Events
e events in Java — happenings in RTS]
* AsynchronousEventHandler

12.07.2007 The Real-Time Specification for Jave

Asynchronous Transfer of Control
 deprecated Java methods:

Hh+read-stop()

throws ThreadDeathException

 but TDE is catchable -> possible
corruption of data structures

12.07.2007 The Real-Time Specification for Jave

Raw Memory Access

* in standard Java, no memory adresses
can be accessed (security)

 thread may not touch memory other than
its own

e but: control of memory-mapped devices
requires raw memory access

* class RawMemoryAccess

12.07.2007 The Real-Time Specification for Jave

Write

O nce

C arefully

R un

A nywhere

C onditionally

12.07.2007 The Real-Time Specification for Jave

12.07.2007

Code Example

The Real-Time Specification for Jave

28

File Edit Source Refactor

Navigate

Search Project Run Window Help

_

oromn oe

&

[#-0-Q- | B #FG-|® ¥ |- 28 |8

%’ I@;Jjava %Resnurce

[Z Packag.. &3 Hierarchy

Ny
= O | [J] SuddenDeath.java

[J] Testjava

(m Test2.java &3

%
= O

ol

vlj:'-DibbleDemos
b [aehfaul
[£ aehsignal
[> £ aehtimer
= H}aeh.watchdog
- [J) Dog.java
\=| Makefile
I fH atc
[£ hellol
= [immoaortal
[m Enter.java
[m [Thread java
[m Quicklmmortal java
[mTest.java
B [J) Test3.java
\=| Makefile
b+ G nhrit
I+ fH rawMemAcces
[+ Erﬁhreads.bigconstructor
[> £ rithreads.chpriority
[> £ rthreadslookaround
= [threads periodic
[m AggresiveMisHdIr.java
[= m MyThread.java

s

package immortal;

=import javax.realtime.*; ||

‘f**
* Demonstrate newInstance with reflection
L

public class Test2
{

= public static void main(String [] args)

{

Integer n = null;

try{

Class [] paramTypes = new Class[1];

paramTypes[0] = Class.forName("java.lang.String");

F

(1]

=

Problerns

Declaration SENEEEAE S

Javadoc

oW R

Ex RA

<terminated= SuddenDeath [Java Application] fopt/SUNWjw/bin/java (09.07. 2007 17:59:37)

Ding! 100000
Ding! 200000
Ding! 300000

Dina!

400000

1]

E

English/European]

12.07.2007

The Real-Time Specification for Jave

SuddenDeath.java

public static class OverrunHandler extends AsyncEventHandler ({
RealtimeThread th;

public void setThread(RealtimeThread th) ({

this.th = th;
}
OverrunHandler () {
super (
new PriorityParameters(
PriorityScheduler. instance().getMinPriority() + AEH _PRIORITY),
null, null, null, null, null);
}

public void handleAsyncEvent() {
System.out.println(
"Zapping thread that's over budget");
th.interrupt(); // Throw an AIE into the thread

}
}

12.07.2007 The Real-Time Specification for Jave

SuddenDeath.java

/**
* Define a RT thread that stops quickly in case
* of an async interrupt.
*/
public static class PeriodicThread extends RealtimeThread ({
private void doWork() throws
AsynchronouslyInterruptedException {
int bound=0;

while(true){
do{
// Use some time
for (f=0.0; f<bound; f+=1.0) ;
bound += 100000; // Use more next time
System.out.println("Ding! " + bound);
while(waitForNextPeriod()) ;
// Recover from miss
System.out.println("Scheduling error");
bound -= 150000; // Lighten load
while(!waitForNextPeriod()) // Eat errors
System.out.print(".");
System.out.println();

The Real-Time Specification for Jave

12.07.2007

SuddenDeath.java

public static void main(String [] args) {

// Build parameters for construction

// of RT thread

OverrunHandler overrunHandler = new OverrunHandler () ;
ReleaseParameters release = new PeriodicParameters(

new RelativeTime(), // Start at .start()

new RelativeTime(1000, 0), // 1 second period
null, // cost

new RelativeTime(100,0),// deadline=period/10
overrunHandler, // overrun handler

null); // no miss handler

SchedulingParameters scheduling = new PriorityParameters(

12.07.2007

PriorityScheduler. instance() .getMinPriority() +
THREAD PRIORITY) ;

The Real-Time Specification for Jave

SuddenDeath.java

RealtimeThread rt= new PeriodicThread(scheduling, release);

// Give the overrun handler a reference to
// the thread it is managing.
overrunHandler.setThread(rt) ;

rt.start(); // Start the periodic thread
try{

Thread.sleep(10000) ;
}catch(InterruptedException e) {}

AsyncEvent evt = new AsyncEvent();
evt.addHandler (overrunHandler) ;
evt.fire(); // pretend we caught an overrun

try{
rt.join(); // Wait for the thread to end
}catch(Exception e){};

12.07.2007 The Real-Time Specification for Jave

File Edit Mavigate Search Project Bun Window Help

J Ci= - ﬁlﬂﬂ]avﬂ [Resource

o
[2 Packag.. 3 =8 (_m SuddenDeath.java &3 m Test.java m Test2 java

=

Problems | J[avadoc | Declaration oM & (S Eﬁ
- EE aeh.watchdog <terminated= SuddenDeath [Java Application] fopt/SUNWjwbin/java (09.07.2007 20:15:14)

b [J)Dog.java Ding! 100000
15l Makefile Ding! 200000

Eg::ua] Ding! 300000

o B immartal Ding! 400000
b B) Enter,java Ding! 500000
B [J] IThread java Dlngl 600000
3 ,|-|] l:luicklrrurrmrtal.ja'.ra Dlngl ?BBBBE‘
b [7estjave Ding! 800000

[[J) Test2 java .
b [Test3 java Scheduling error

= Makefile
b G nhrt Ding! 750000

b i rautlemAcces Scheduling error
[Erﬂhreads.blgconstructor

[» £% threads.chpriority

[£ rithreads.lookaround IDlngl 700000

= [threads periodic Scheduling error
[+ m AggressiveMissHdIr java

[41X MyThread java |D1ng I 650000

E %::;::ﬁ:;::?m Zapping thread that's over budget
[+ m Periodicl java
[» m PeriodicZ.java
[+ m SuddenDeath.java
=| Makefile
[+ [Hsched
I» fHscoped
[» =4 IRE System Library [RTS2.01

I

enDeath.java — Eclip) H

12.07.2007 The Real-Time Specification for Jave

12.07.2007

Implementations

The Real-Time Specification for Jave

35

Implementations

Timesys

* RTSJ reference implementation
e x86-Linux (Fedora)

* freely available

e version 1.1lalpha

12.07.2007 The Real-Time Specification for Jave

Implementations

Sun Java Real Time
System (RTS)

e Solaris (x86 and SPARC)
e version 2.0 (May 2007)
e available for academic use

12.07.2007 The Real-Time Specification for Jave

Implementations

JRate

* extension of the Gnu GCJ compiler

 Washington University, St. Louis
e GPL

e version 0.3.7.2

12.07.2007 The Real-Time Specification for Jave

Implementation

Javolution

* real-time library
e BSD licensed
e for J2ME, J2SE, GC(C]

12.07.2007 The Real-Time Specification for Jave

12.07.2007

References

The Real-Time Specification for Jave

40

References

e WWW.rtsj.org

* [Bol00] Greg Bollela et al: The Real-
time Specification for Java, Addison-
Wesley, 2000

* [Dib02] Peter Dibble: Real-Time Java
Platform Programming, Sun Microsystems
Press, 2002

e [BurO1] Alan Burns: Real-Time Systems
and Programming Languages, Addison-
Wesley, 2001

12.07.2007 The Real-Time Specification for Jave

12.07.2007

Summary

The Real-Time Specification for Jave

42

* RTSJ) enhances Java with real-time
capabilities

e offers platform-independent real-time
software development

 keeps compatibility with legacy Java
applications

e still under development
e various implementations

12.07.2007 The Real-Time Specification for Jave

