
Seminarvortrag

The Real-Time
Specification

for Java

Erik Burger

12.07.2007 The Real-Time Specification for Java 2

Overview
● History of RTSJ / development process
● Standard JDK architecture
● Requirements on real-time systems
● RTSJ specification
● Code examples
● Implementations

12.07.2007 The Real-Time Specification for Java 3

History of RTSJ

12.07.2007 The Real-Time Specification for Java 4

History of RTSJ
● Java is generally believed as unsuitable

for real-time applications
● Common handling of real-time

components in Java: Use C for real-time
parts, Java for the application

12.07.2007 The Real-Time Specification for Java 5

History of RTSJ
● Java Specification Request (JSR) number 1
● Specification Document: 2001
● various companies were involved during

the spec process (Sun, IBM, TimeSys)

12.07.2007 The Real-Time Specification for Java 6

Design of Java

12.07.2007 The Real-Time Specification for Java 7

Design of Java

Write
O nce
R un
A nywhere

12.07.2007 The Real-Time Specification for Java 8

Design of Java

Virtual Machine (JVM)
● abstraction layer for underlying hardware
● bytecode interpreter = hand-optimized

assembler code
● Just-In-Time (JIT) compiler
● does class loading, scheduling, memory

management

12.07.2007 The Real-Time Specification for Java 9

Design of Java

Garbage Collection (GC)
● not in the Java Specification
● part of the JVM
● collects unused memory
● GC is the only possibility to free memory

in Java

12.07.2007 The Real-Time Specification for Java 10

Design of Java

GC is executed
● on request: System.gc suggests GC, but

program can prevent execution
● on demand: only when new() is invoked

and there is not enough memory on the
heap

● in background: when system thinks that
program is idle; can be disabled

12.07.2007 The Real-Time Specification for Java 11

Requirements on a
Real-Time System

12.07.2007 The Real-Time Specification for Java 12

Requirements on a RT System

real time ≠ really fast

12.07.2007 The Real-Time Specification for Java 13

Requirements on a RT System

● But then, what does Real-Time mean?
● „the ability to reliably and predictably

reason about and control the temporal
behavior of program logic” (Bollela)

● consistent performance over speed

12.07.2007 The Real-Time Specification for Java 14

Requirements on a RT system

according to Alan Burns, a real-time system
is required to:

● specify times at which actions are to be
performed

● specify times at which actions are to be
completed

● respond to situations where all timing
requirements cannot be met

● respond to situations where the timing
requirements are changed dynamically

12.07.2007 The Real-Time Specification for Java 15

Requirements on a RT system

How does Java meet these requirements?
● GC makes predictions on execution times

complicated
● possible solution: force GC to become

predictable (e.g. Sun Java RTS 1.0)
● JVM performance depends on caching,

paging, DMA
● problem: uncontrolled asynchronous

events

12.07.2007 The Real-Time Specification for Java 16

The Real-Time
Specification for Java

12.07.2007 The Real-Time Specification for Java 17

Specification
● enhancement of API, no syntactical

extension
● any compiler can make classes that use

RTSJ
● correct non-real-time code will execute on

any real-time implementation
● for real-time applications, a real-time JVM

is needed

12.07.2007 The Real-Time Specification for Java 18

Specification

The RTSJ enhances Java in six fields:
● RT threads with more carefully defined

scheduling attributes
● tools and mechanisms that help writing

code that does not need GC
● asynchronous event handlers
● asynchronous transfer of control
● control over memory allocation of objects
● direct memory access

12.07.2007 The Real-Time Specification for Java 19

Specification

High-Resolution Time
● 0.1µs granularity is sufficient for almost

any software purpose
● RTSJ: 84bit time
● nanosecond granularity,

range of ~292 years
● HighResolutionTime Base Class
● Rational Time for periodic events

12.07.2007 The Real-Time Specification for Java 20

Specification

Real-Time Threads
● extended priorities (28 levels)
● scoped memory
● AsynchronouslyInterruptedExceptions
● periodic scheduling

12.07.2007 The Real-Time Specification for Java 21

Specification

Memory Allocation
● no “magic” real-time GC
● three types of memory:

– immortal memory: never GC'ed, shared
among all threads, remains until JVM
terminates

– scoped memory: defined lifetime
– heap: GC frees object only if it cannot

be reached

12.07.2007 The Real-Time Specification for Java 22

Specification
● NoHeapRealTimeThread

– is not allowed to access elements on the
heap

– can preempt GC

● Reuse of immortal memory is encouraged
● re-using of threads is possible

12.07.2007 The Real-Time Specification for Java 23

Specification

Heap   
Immortal   
Scoped   ”Available” Scopes

Local Variable   ”Available” Scopes

 Heap  Immortal  Scoped

● Allowed memory assignment:

12.07.2007 The Real-Time Specification for Java 24

Asynchronous Events
● events in Java – happenings in RTSJ
● AsynchronousEventHandler

Specification

12.07.2007 The Real-Time Specification for Java 25

Specification

Asynchronous Transfer of Control
● deprecated Java methods:
Thread.suspend(), Thread.resume(),
Thread.stop()
throws ThreadDeathException

● but TDE is catchable -> possible
corruption of data structures

12.07.2007 The Real-Time Specification for Java 26

Specification

Raw Memory Access
● in standard Java, no memory adresses

can be accessed (security)
● thread may not touch memory other than

its own
● but: control of memory-mapped devices

requires raw memory access
● class RawMemoryAccess

12.07.2007 The Real-Time Specification for Java 27

Specification

Write
O nce
C arefully
R un
A nywhere
C onditionally

12.07.2007 The Real-Time Specification for Java 28

Code Example

12.07.2007 The Real-Time Specification for Java 29

12.07.2007 The Real-Time Specification for Java 30

SuddenDeath.java
 public static class OverrunHandler extends AsyncEventHandler {
 RealtimeThread th;

 public void setThread(RealtimeThread th) {
 this.th = th;
 }

 OverrunHandler() {
 super(
 new PriorityParameters(
 PriorityScheduler.instance().getMinPriority() + AEH_PRIORITY),
 null, null, null, null, null);
 }

 public void handleAsyncEvent() {
 System.out.println(
 "Zapping thread that's over budget");
 th.interrupt(); // Throw an AIE into the thread
 }
 }

12.07.2007 The Real-Time Specification for Java 31

SuddenDeath.java
 /**
 * Define a RT thread that stops quickly in case
 * of an async interrupt.
 */
 public static class PeriodicThread extends RealtimeThread {
 private void doWork() throws
 AsynchronouslyInterruptedException {
 int bound=0;

 while(true){
 do{
 // Use some time
 for(f=0.0;f<bound;f+=1.0) ;
 bound += 100000; // Use more next time
 System.out.println("Ding! " + bound);
 }while(waitForNextPeriod()) ;
 // Recover from miss
 System.out.println("Scheduling error");
 bound -= 150000; // Lighten load
 while(!waitForNextPeriod()) // Eat errors
 System.out.print(".");
 System.out.println();
 }
 }

12.07.2007 The Real-Time Specification for Java 32

SuddenDeath.java

 public static void main(String [] args) {

 // Build parameters for construction
 // of RT thread
 OverrunHandler overrunHandler = new OverrunHandler();
 ReleaseParameters release = new PeriodicParameters(
 new RelativeTime(), // Start at .start()
 new RelativeTime(1000, 0), // 1 second period
 null, // cost
 new RelativeTime(100,0),// deadline=period/10
 overrunHandler, // overrun handler
 null); // no miss handler

 SchedulingParameters scheduling = new PriorityParameters(
 PriorityScheduler.instance().getMinPriority() +

 THREAD_PRIORITY);

12.07.2007 The Real-Time Specification for Java 33

SuddenDeath.java

 RealtimeThread rt= new PeriodicThread(scheduling, release);

 // Give the overrun handler a reference to
 // the thread it is managing.
 overrunHandler.setThread(rt);

 rt.start(); // Start the periodic thread
 try{
 Thread.sleep(10000);
 }catch(InterruptedException e){}

 AsyncEvent evt = new AsyncEvent();
 evt.addHandler(overrunHandler);
 evt.fire(); // pretend we caught an overrun

 try{
 rt.join(); // Wait for the thread to end
 }catch(Exception e){};
 }
}

12.07.2007 The Real-Time Specification for Java 34

12.07.2007 The Real-Time Specification for Java 35

Implementations

12.07.2007 The Real-Time Specification for Java 36

Implementations

Timesys
● RTSJ reference implementation
● x86-Linux (Fedora)
● freely available
● version 1.1alpha

12.07.2007 The Real-Time Specification for Java 37

Implementations

Sun Java Real Time
System (RTS)

● Solaris (x86 and SPARC)
● version 2.0 (May 2007)
● available for academic use

12.07.2007 The Real-Time Specification for Java 38

Implementations

jRate
● extension of the Gnu GCJ compiler
● Washington University, St. Louis
● GPL
● version 0.3.7.2

12.07.2007 The Real-Time Specification for Java 39

Implementation

Javolution
● real-time library
● BSD licensed
● for J2ME, J2SE, GCJ

12.07.2007 The Real-Time Specification for Java 40

References

12.07.2007 The Real-Time Specification for Java 41

References
● www.rtsj.org
● [Bol00] Greg Bollela et al: The Real-

time Specification for Java, Addison-
Wesley, 2000

● [Dib02] Peter Dibble: Real-Time Java
Platform Programming, Sun Microsystems
Press, 2002

● [Bur01] Alan Burns: Real-Time Systems
and Programming Languages, Addison-
Wesley, 2001

12.07.2007 The Real-Time Specification for Java 42

Summary

12.07.2007 The Real-Time Specification for Java 43

Summary
● RTSJ enhances Java with real-time

capabilities
● offers platform-independent real-time

software development
● keeps compatibility with legacy Java

applications
● still under development
● various implementations

